android图片处理之图像模糊
这篇文章将给大家介绍android图片处理的高效做法,大家有需求的时候可以参考一下。
首先我要说明一下本实例中实现的效果(我还不会制作gif图,如果谁会的话,希望可以教一下我):通过手指对图片的上下滑动,实现图片的逐渐模糊效果。
找网上找了一张效果图如下(侵权请通知删除):
下面我来讲解一下效果制作的思路。
首先是对图像的模糊处理,最常见的模糊处理方式是高斯模糊,高斯模糊指定一个半径radius,对于图片上的每个像素点,以其为中心,有一个radius长的正方形(边界点除外,但是可以使用对称的方式计算),对于这个正方形上的每一个点,和权值(权值是根据正态分布函数计算出来的)相乘以后相加,再求平均,用该平均值代替中心点的值。
高斯模糊效率比较低,处理时间很长,github上有一个快速模糊的算法,接下来我们也会用到。
另外,android其实提供了一个高效的图片处理库RenderScript,使用这个库我们也可以快速的进行图片模糊。
下面来看我写的,一个图片模糊处理的类
public class BitmapBlurHelper {
//缩放系数
public final static int SCALE = 8;
/**
* 模糊函数
* @param context
* @param sentBitmap
* @param radius
* @return
*/
public static Bitmap doBlur(Context context, Bitmap sentBitmap, float radius) {
if(sentBitmap==null) return null;
if (radius <= 0 || radius > 25) radius = 25f;//范围在1-25之间
if (radius<=6&&VERSION.SDK_INT > 16) {//经测试,radius大于6后,fastBlur效率更高,并且RenderScript在api11以上使用
Bitmap bitmap = Bitmap.createScaledBitmap(sentBitmap, sentBitmap.getWidth()/SCALE,sentBitmap.getHeight()/SCALE,false);//先缩放图片,增加模糊速度
final RenderScript rs = RenderScript.create(context);
final Allocation input = Allocation.createFromBitmap(rs, bitmap, Allocation.MipmapControl.MIPMAP_NONE,
Allocation.USAGE_SCRIPT);
final Allocation output = Allocation.createTyped(rs, input.getType());
final ScriptIntrinsicBlur script = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));
script.setRadius(radius);
script.setInput(input);
script.forEach(output);
output.copyTo(bitmap);
rs.destroy();
return bitmap;
}else{//快速模糊
return fastBlur(sentBitmap,radius);
}
}
/**
* 快速模糊算法
* @param sbitmap
* @param radiusf
* @return
* Stack Blur v1.0 from
* http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html
* Java Author: Mario Klingemann <mario at quasimondo.com>
* http://incubator.quasimondo.com
* created Feburary 29, 2004
* Android port : Yahel Bouaziz <yahel at kayenko.com>
* http://www.kayenko.com
* ported april 5th, 2012
* This is a compromise between Gaussian Blur and Box blur
* It creates much better looking blurs than Box Blur, but is
* 7x faster than my Gaussian Blur implementation.
* I called it Stack Blur because this describes best how this
* filter works internally: it creates a kind of moving stack
* of colors whilst scanning through the image. Thereby it
* just has to add one new block of color to the right side
* of the stack and remove the leftmost color. The remaining
* colors on the topmost layer of the stack are either added on
* or reduced by one, depending on if they are on the right or
* on the left side of the stack.
* If you are using this algorithm in your code please add
* the following line:
*
* Stack Blur Algorithm by Mario Klingemann <mario@quasimondo.com>
*/
public static Bitmap fastBlur(Bitmap sbitmap, float radiusf){
Bitmap bitmap = Bitmap.createScaledBitmap(sbitmap, sbitmap.getWidth()/SCALE,sbitmap.getHeight()/SCALE,false);//先缩放图片,增加模糊速度
int radius = (int)radiusf;
if (radius < 1) {
return (null);
}
int w = bitmap.getWidth();
int h = bitmap.getHeight();
int\[\] pix = new int\[w * h\];
bitmap.getPixels(pix, 0, w, 0, 0, w, h);
int wm = w - 1;
int hm = h - 1;
int wh = w * h;
int div = radius + radius + 1;
int r\[\] = new int\[wh\];
int g\[\] = new int\[wh\];
int b\[\] = new int\[wh\];
int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
int vmin\[\] = new int\[Math.max(w, h)\];
int divsum = (div + 1) >> 1;
divsum *= divsum;
int dv\[\] = new int\[256 * divsum\];
for (i = 0; i < 256 * divsum; i++) {
dv\[i\] = (i / divsum);
}
yw = yi = 0;
int\[\]\[\] stack = new int\[div\]\[3\];
int stackpointer;
int stackstart;
int\[\] sir;
int rbs;
int r1 = radius + 1;
int routsum, goutsum, boutsum;
int rinsum, ginsum, binsum;
for (y = 0; y < h; y++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
for (i = -radius; i <= radius; i++) {
p = pix\[yi + Math.min(wm, Math.max(i, 0))\];
sir = stack\[i + radius\];
sir\[0\] = (p & 0xff0000) >> 16;
sir\[1\] = (p & 0x00ff00) >> 8;
sir\[2\] = (p & 0x0000ff);
rbs = r1 - Math.abs(i);
rsum += sir\[0\] * rbs;
gsum += sir\[1\] * rbs;
bsum += sir\[2\] * rbs;
if (i > 0) {
rinsum += sir\[0\];
ginsum += sir\[1\];
binsum += sir\[2\];
} else {
routsum += sir\[0\];
goutsum += sir\[1\];
boutsum += sir\[2\];
}
}
stackpointer = radius;
for (x = 0; x < w; x++) {
r\[yi\] = dv\[rsum\];
g\[yi\] = dv\[gsum\];
b\[yi\] = dv\[bsum\];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack\[stackstart % div\];
routsum -= sir\[0\];
goutsum -= sir\[1\];
boutsum -= sir\[2\];
if (y == 0) {
vmin\[x\] = Math.min(x + radius + 1, wm);
}
p = pix\[yw + vmin\[x\]\];
sir\[0\] = (p & 0xff0000) >> 16;
sir\[1\] = (p & 0x00ff00) >> 8;
sir\[2\] = (p & 0x0000ff);
rinsum += sir\[0\];
ginsum += sir\[1\];
binsum += sir\[2\];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack\[(stackpointer) % div\];
routsum += sir\[0\];
goutsum += sir\[1\];
boutsum += sir\[2\];
rinsum -= sir\[0\];
ginsum -= sir\[1\];
binsum -= sir\[2\];
yi++;
}
yw += w;
}
for (x = 0; x < w; x++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
yp = -radius * w;
for (i = -radius; i <= radius; i++) {
yi = Math.max(0, yp) + x;
sir = stack\[i + radius\];
sir\[0\] = r\[yi\];
sir\[1\] = g\[yi\];
sir\[2\] = b\[yi\];
rbs = r1 - Math.abs(i);
rsum += r\[yi\] * rbs;
gsum += g\[yi\] * rbs;
bsum += b\[yi\] * rbs;
if (i > 0) {
rinsum += sir\[0\];
ginsum += sir\[1\];
binsum += sir\[2\];
} else {
routsum += sir\[0\];
goutsum += sir\[1\];
boutsum += sir\[2\];
}
if (i < hm) {
yp += w;
}
}
yi = x;
stackpointer = radius;
for (y = 0; y < h; y++) {
// Preserve alpha channel: ( 0xff000000 & pix\[yi\] )
pix\[yi\] = (0xff000000 & pix\[yi\]) | (dv\[rsum\] << 16) | (dv\[gsum\] << 8) | dv\[bsum\];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack\[stackstart % div\];
routsum -= sir\[0\];
goutsum -= sir\[1\];
boutsum -= sir\[2\];
if (x == 0) {
vmin\[y\] = Math.min(y + r1, hm) * w;
}
p = x + vmin\[y\];
sir\[0\] = r\[p\];
sir\[1\] = g\[p\];
sir\[2\] = b\[p\];
rinsum += sir\[0\];
ginsum += sir\[1\];
binsum += sir\[2\];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack\[stackpointer\];
routsum += sir\[0\];
goutsum += sir\[1\];
boutsum += sir\[2\];
rinsum -= sir\[0\];
ginsum -= sir\[1\];
binsum -= sir\[2\];
yi += w;
}
}
bitmap.setPixels(pix, 0, w, 0, 0, w, h);
return (bitmap);
}
}
从上面的代码我们可以看到,我首先对图片进行了比例缩放,这样做的目的是为了加快模糊处理效率。
如果我们不事先对图片进行缩放,无论是调用快速模糊还是RenderScript,都会需要较长的计算时间,对于最大模糊效果,前者需要2000ms以上,后者需要需要500ms以上,这个效率显然是不能接受的。
我们的模糊系数范围是1-25,因为RenderScript的系数要求就是这个范围(原因不得而知,但是超过了就会抛异常)。
对于图片进行缩放以后,我发现了一个神奇的地方,就是快速模糊的效率居然赶上了RenderScript的效率,在radius为6以下,RenderScript较高,在20ms之内,而快速模糊需要200ms以内,但是在6以后,快速模糊只在20ms以内,而RenderScript则超过20ms,并且随着radius的增大,两者的差距也拉大。
所以在代码中,我们根据6为边界,分别使用两者,另外RenderScript还要求在API 11以上才能使用。
OK,由来图片模糊的处理方法,我们现在想实现图片上的动态效果,简单的思路就是监听手指的移动,然后每次都讲图片进行模糊处理。
这种思路面临一个困难,就是GPU绘制的速度超过了模糊算法的速度,也就是说模糊计算需要较长时间,这样会造成程序的卡顿。
我的解决思路是,首先将图片进行一次最大的模糊处理,得到一张最模糊的图片,然后将清晰图片(在下方)和模糊图片(在上方)叠加,在手指移动过程中,修改模糊图片的透明度,从而实现从清晰到透明的过渡效果。
怎么实现图片叠加呢?我使用了LayerDrawable这个类,并且构造了一个BlurDrawable类
/**
* 模糊drawable
*/
public class BlurDrawable{
//上下两层图片
private Drawable\[\] array = new Drawable\[2\];
//层叠图片
private LayerDrawable la;
/**
* @param context
* @param res
* @param bitmap
*/
public BlurDrawable(Context context,Resources res, Bitmap bitmap) {
array\[0\] = new BitmapDrawable(res,bitmap);
array\[1\] = new BitmapDrawable(res,BitmapBlurHelper.doBlur(context,bitmap,25));//生产模糊图片
array\[1\].setAlpha(0);
la = new LayerDrawable(array);
la.setLayerInset(0, 0, 0, 0, 0);//层叠
la.setLayerInset(1, 0, 0, 0, 0);
}
/**
* 返回层叠以后的图片
* @return
*/
public LayerDrawable getBlurDrawable() {
return la;
}
/**
* 获得模糊系数,本质上是透明度
* @return
*/
public int getBlur(){
return array\[1\].getAlpha();
}
/**
* 设置模糊系数
* @param alpha
*/
public void setBlur(int alpha){
array\[1\].setAlpha(alpha);
}
}
上面的代码很简单,相信大家也看得懂,最后就是为ImageView设置drawable,然后添加一个onClickListener
mBlurImage = (ImageView)findViewById(R.id.img);
final Bitmap bp = BitmapFactory.decodeResource(getResources(), R.drawable.ssd);
final BlurDrawable blurDrawable = new BlurDrawable(this, getResources(),bp);
mBlurImage.setImageDrawable(blurDrawable.getBlurDrawable());
mBlurImage.setOnTouchListener(new View.OnTouchListener() {
private float mLastY;
@Override
public boolean onTouch(View v, MotionEvent event) {
switch (event.getAction()) {
case MotionEvent.ACTION_DOWN:
mLastY = event.getY();
break;
case MotionEvent.ACTION_MOVE:
float y = event.getY();
float alphaDelt = (y - mLastY) / 50;
int alpha = (int) (blurDrawable.getBlur() + alphaDelt);
Log.i("time", alpha + "");
if (alpha > 255) {
alpha = 255;
} else if (alpha < 0.0) {
alpha = 0;
}
blurDrawable.setBlur(alpha);
break;
case MotionEvent.ACTION_UP:
break;
}
return true;
}
});
由于透明度的范围是0-255,我们的模糊系数也从0到255
只有在action_move过程最后,不断修改blurDrawable的透明度就可以了,而且透明度改变方法我也提供了
Ok,到此为止,透明效果就实现了,大家看copy一下代码来看一下,个人认为这段代码是图片模糊处理的较好实现例子。